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SEPARATION OF LIQUID SOLUTIONS BY CONTAINED L I Q U I D  MEMBRANES 

A .  Sengupta ,  R. B a s u ,  R .  Prasad and K.K.  S i r k a r  
Department of Chemistry and Chemical Engineer ing 
S tevens  I n s t i t u t e  of  Technology 
Castle P o i n t ,  Hoboken, N J  07030 

ABSTRACT 

The technique  of conta ined  l i q u i d  membranes (CLM) 
f o r  l i q u i d  s o l u t i o n  s e p a r a t i o n  i s  d i s c u s s e d .  The 
CLM i s  obta ined  by c o n f i n i n g  t h e  membrane l i q u i d  
between two sets of microporous hol low f i b e r s  
(MHF). The lumen of t h e  hol low f i b e r  carries t h e  
feed o r  t h e  s t r i p  s o l u t i o n  under proper  phase 
p r e s s u r e  c o n d i t i o n  v is -a -v is  t h e  membrane phase.  
Various p o s s i b l e  s t r u c t u r a l  c o n f i g u r a t i o n s  of t h e  
CLM are  i l l u s t r a t e d  w i t h  r e s p e c t  t o  t h e  n a t u r e  of 
microporous hollow f i b e r  s u b s t r a t e ,  t h e  f e e d  s o l u -  
t i o n  and t h e  l i q u i d  membrane. The c o n t r i b u t i o n s  
of  d i f f e r e n t  r e s i s t a n c e s  t o  t h e  s o l u t e  t r a n s p o r t  
ra te  are i d e n t i f i e d .  Some b a s i c  exper imenta l  
d a t a  obta ined  i n  small CLM permeators  are pre-  
s e n t e d  f o r  two systems w i t h  o r g a n i c  l i q u i d  mem- 
b ranes  t o  i l l u s t r a t e  how s t e a d y  s ta te  s e p a r a t i o n  
i s  achieved a f t e r  an i n i t i a l  uns teady  p e r i o d .  
The c o n s i d e r a b l e  advantages  of t h e  CLM s t r u c t u r e  
over  more t r a d i t i o n a l  l i q u i d  membrane techniques  
such as supported l i q u i d  membrane (SLM) w i t h  
r e s p e c t  t o  membrane s t a b i l i t y ,  membrane regenera-  
t i o n  and feed  e q u i l i b r a t i o n  are poin ted  o u t .  

INTRODUCTION 

Supported l i q u i d  membranes (SLM) are t h i n  l a y e r s  of pure  
l i q u i d s  o r  l i q u i d  s o l u t i o n s  immobilized i n  microporous i n e r t  sup- 
p o r t s  (1,2). They have e x t r a o r d i n a r y  c a p a b i l i t i e s  of removing 
s o l u t e s  from a feed  s o l u t i o n  t o  a s t r i p  solution ( 3 ) .  Thei r  major 
advantages  i n c l u d e :  h i g h  s e p a r a t i o n  f a c t o r  p e r  s t a g e ,  low c a p i t a l  
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1736 SENGUPTA ET A L .  

and o p e r a t i n g  c o s t s  due,  amongst o t h e r s ,  t o  a v e r y  low i n v e n t o r y  of 
e x t r a c t a n t ,  modular and compact s e p a r a t o r s  when hol low f i b e r s  a r e  
used ,  low energy c o s t  and e l i m i n a t i o n  of e x t r a c t a n t  loss  r e s u l t i n g  
from inadequate  coa lescence  i n  convent iona l  dispers ion-based s o l -  
v e n t  e x t r a c t i o n .  F u r t h e r ,  t h e  a b i l i t y  t o  c o n c e n t r a t e  s o l u t e  i n  t h e  
s t r i p  s o l u t i o n  u s i n g  coupled t r a n s p o r t  is a h i g h l y  a t t r a c t i v e  
f e a t u r e  of a SLM. D e s p i t e  such advantages ,  SLM-s are n o t  used i n  
i n d u s t r y  because of major concerns w i t h  t h e i r  l i f e t i m e  ( 4 ) .  

Liquid membrane i n s t a b i l i t y  has  been a s c r i b e d  t o  ( 3 , 4 , 5 )  t h e  
fo l lowing:  e x t r a c t a n t  l o s s  i n t o  feed  and s t r i p  s o l u t i o n s ,  p rogres-  
s i v e  r e d u c t i o n  of t h e  hydrophobic i ty  of hydrophobic s u p p o r t s  (used 
f o r  o r g a n i c  l i q u i d  membranes) by sur-face-act ive e x t r a c t a n t s ,  and 
t h e  p r e s s u r e  d i f f e r e n c e  between the t w o  s i d e s  of  the SIX. I n  
coupled t r a n s p o r t  having a l a r g e  transmembrane osmotic  p r e s s u r e  
g r a d i e n t ,  Danesi  e t  a l .  ( 6 )  have f u r t h e r  concluded t h a t  s i g n i f i c a n t  
t r a n s f e r  of o s m o t i c a l l y  d r i v e n  water d i s p l a c e s  o r g a n i c  l i q u i d  from 
p o r e s  i e a d i n g  t o  membrane i n s t a b i l i t y .  

W e  d e s c r i b e  h e r e  a novel  conta ined  l i q u i d  membrane (CLM) s t r u c -  
t u r e  t h a t  has  t h e  p o t e n t i a l  t o  e l i m i n a t e  t h e  shortcomings of SLM-s 
whi le  r e t a i n i n g  t h e  l a t t e r ' s  b a s i c  advantages.  We i d e n t i f y  i t  as 
t h e  hol low f i b e r  conta ined  l i q u i d  membrane (HFCLM) technique when 
microporous hol low f i b e r s  are used t o  c o n t a i n  t h e  l i q u i d  membrane 
i n  a permeator .  The HFCLM technique f o r  g a s  s e p a r a t i o n  h a s  been 
i n v e s t i g a t e d  e l sewhere  ( 7 ) .  

The HPCLM can  be used f o r  e i t h e r  a n  aqueous f e e d / o r g a n i c  mem- 
b rane  system, o r  an o r g a n i c  feed/aqueous membrane system. Each of 
t h e s e  two systems can employ e i t h e r  h y d r o p h i l i c  microporous hollow 
f i b e r s  o r  hydrophobic microporous hol low f i b e r s .  We f i r s t  d e s c r i b e  
t h e s e  f o u r  p o s s i b l e  c o n f i g u r a t i o n s .  We then  p r e s e n t  a f i r s t - o r d e r  
m a s s  t r a n s p o r t  a n a l y s i s  adopt ing  t h e  r e s i s t a n c e s - i n - s e r i e s  approach 
t o  i d e n t i f y  the r o l e  of  v a r i o u s  m a s s  t r a n s f e r  r e s i s t a n c e s  f o r  non- 
r e a c t i v e  s i t u a t i o n s .  The HFCLM s e p a r a t i o n  behavior  i s  i l l u s t r a t e d  
n e x t  by s tudying  t h e  removal of phenol and acetic a c i d  from aqueous 
s o l u t i o n s  u s i n g  d i f f e r e n t  o r g a n i c  l i q u i d  membranes. Both s t e a d y  
s ta te  and i n i t i a l  time dependent o b s e r v a t i o n s  are r e p o r t e d .  Steady 
s t a t e  performances are compared w i t h  t h e  v a l u e s  p r e d i c t e d  by f i r s t  
o r d e r  estimates from t h e  r e s i s t a n c e  model. A more d e t a i l e d  com- 
p a r i s o n  vis-a-vis t h e  boundary l a y e r  r e s i s t a n c e s ,  e t c .  has  been 
c a r r i e d  o u t  i n  (8) f o r  aqueous feeds .  

HOLLOW FIBER CONTAINED LIQUID MEMBRANE CONFIGURATIONS 

Aqueous FeedIOrganic Membrane 

Consider  two sets  of microporous h y d r o p h i l i c  hol low f i b e r s  
i n t i m a t e l y  mixed t o g e t h e r  i n  a permeator she l l  (Fig. 1). F i b e r s  
marked IF' have the aqueous f e e d  f lowing  i n  t h e  lumen; f i b e r s  
marked 'S' have a n  aqueous s t r i p  s o l u t i o n  f lowing i n  t h e  lumen. 
The f i b e r  w a l l  Dores are f i l l e d  by t h e  r e s p e c t i v e  aqueous s o l u t i o n s  
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SEPARATION OF L I Q U I D  SOLUTIONS 1 7 3 7  

RNEATOR SHELL 

HYDROPHIL IC HOLLOW 
F I E E R S  CARRYING THE 

S T R I P  SOLUTIOI.1 

HYDROPHIL IC  HOL1.O ' 

F I E E R S  CARRYING TH 
FEED SOLUTION 

ORGAN1 C L I Q U I D  i4E4BRAIIE 

TWO SETS OF HOLLOW F I B E R S  
CARRYING AQUEQUS SOLUTIONS 

CONTAINED I N  BETWEEN 1IHE 
TWO SETS OF MICROPOROUS 
HOLLOW FIBERS CLOSELY 
PACKED I N S I D E  THE SHELL 

FECD 

PERi4EATOR SHELL  

MEMBRANE L I Q U I D  
RESERVOIR 

Fig .  1. H o l l o w  f i b e r  conta ined  l i q u i d  membrane (HFCLM) 
permeator: concept  and schematic  f o r  aqueous 
s o l u t i o n  s e p a r a t i o n  w i t h  h y d r o p h i l i c  microporous 
f i b e r s .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



SENGUPTA ET AL. 1738 

because t h e  f i b e r s  a r e  h y d r o p h i l i c  (F ig .  2 ) .  The s h e l l  s i d e  space 
between t h e s e  hollow f i b e r s  c o n t a i n s  t h e  o r g a n i c  l i q u i d  s e l e c t e d  
as t h e  membrane. This  l i q u i d  should  obvious ly  be immiscible  w i t h  
t h e  aqueous phases .  

There a r e  two aqueous-organic i n t e r f a c e s  i n  t h i s  c o n f i g u r a t i o n .  
One i n t e r f a c e  i s  a t  t h e  o u t s i d e  d iameter  of t h e  feed  f i b e r  where 
s o l u t e  i s  e x t r a c t e d  i n t o  t h e  o r g a n i c  membrane l i q u i d ;  t h e  second 
i n t e r f a c e  i s  a t  t h e  o u t s i d e  d iameter  of t h e  s t r i p  f i b e r  f o r  back 
e x t r a c t i o n  of t h e  s o l u t e  i n t o  t h e  s t r i p  s o l u t i o n ,  Guided by exten-  
s i v e  p r e v i o u s  s t u d i e s  on nondispers ive  s o l v e n t  e x t r a c t i o n  u s i n g  
h y d r o p h i l i c  microporous f l a t  membranes and hollow f i b e r s  (9,10,11), 
w e  s t a b i l i z e  both  t h e  i n t e r f a c e s  by main ta in ing  t h e  o r g a n i c  mem- 
brane l i q u i d  a t  a p r e s s u r e  h igher  than  t h e  two aqueous phase pres -  
s u r e s .  The o r g a n i c  membrane l i q u i d  i n  t h e  s h e l l  i s  connected t o  a n  
e x t e r n a l  r e s e r v o i r  p r e s s u r i z e d  independent ly  (Fig.  1). 

T h i s  c o n f i g u r a t i o n  h a s  s e v e r a l  b e n e f i t s .  Two d i f f e r e n t i a l  
p r e s s u r e s  (feed-membrane and strip-membrane) can now be  indepen- 
d e n t l y  c o n t r o l l e d ;  i n  SLM-s only  one d i f f e r e n t i a l  p r e s s u r e  (between 
t h e  feed  and s t r i p )  can be c o n t r o l l e d .  Secondly, t h e  o r g a n i c  mem- 
brane l i q u i d  i s  a u t o m a t i c a l l y  r e p l e n i s h e d  from t h e  e x t e r n a l  reser- 
v o i r  t o  c o u n t e r a c t  any l o s s ,  e l i m i n a t i n g  t h e  need f o r  any p r i o r  
e q u i l i b r a t i o n .  These f e a t u r e s  l e a d  t o  e x t r a o r d i n a r y  l i q u i d  mem- 
b rane  s t a b i l i t y .  F u r t h e r ,  us ing  f i n e  hollow f i b e r s ,  t h e  e f f e c t i v e  
l i q u i d  membrane t h i c k n e s s  i n  t h e  i n t e r s t i c e s  of  t h e  t i g h t l y  packed 
hol low f i b e r  assembly can be k e p t  a t  a v e r y  low v a l u e  (7,8). 
o r g a n i c  membrane l i q u i d  conta ined  between t h e  hollow f i b e r s  ( t h e  
HFCLM) t h u s  r e t a i n s  t h e  t r a d i t i o n a l  advantages of a SLM. 

The 

I n  c a s e  of microporous hydrophobic hol low f i b e r s  and aqueous 
feed  and s t r i p  s o l u t i o n s ,  t h e  o r g a n i c  l i q u i d  membrane w i l l  pene- 
t ra te  t h e  p o r e s  i n  t h e  w a l l  of bo th  t h e  feed  and s t r i p  f i b e r s  
(F ig .  2 ) .  The aqueous-organic i n t e r f a c e s  a r e  s t a b i l i z e d  a t  t h e  
i n t e r n a l  d iameter  of bo th  types  of hol low f i b e r s .  Extens ive  in-  
v e s t i g a t i o n s  on n o n d i s p e r s i v e  s o l v e n t  e x t r a c t i o n  u s i n g  microporous 
hydrophobic membranes ( 1 1 , 1 2 , 1 3 , 1 4 )  sugges t  main ta in ing  t h e  o r g a n i c  
membrane phase a t  a p r e s s u r e  lower t h a n  t h o s e  of  t h e  two aqueous 
streams. 

Organic  FeedfAqueous Membrane 

To remove a s o l u t e  from an o r g a n i c  s o l v e n t ,  one can u s e  an 
aqueous s o l u t i o n  (15) o r  a p o l a r  o r g a n i c  phase as t h e  l i q u i d  mem- 
brane as  long a s  t h e  membrane i s  immiscible  w i t h  t h e  feed  and t h e  
r e c e i v i n g  phase (F ig .  2 ) .  For example, t o l u e n e  and n-heptane can 
be  s e p a r a t e d  u s i n g  a p o l a r  o r g a n i c  membrane l i q u i d  e .g .  s u l f o l a n e  
o r  n-methyl p y r r o l i d o n e  (NMP) w i t h  o r  wi thout  water  i n  t h e  HFCLM 
c o n f i g u r a t i o n .  Toluene p r e f e r e n t i a l l y  permeates  through t h e  mem- 
brane and can be  removed by a s t r i p  hydrocarbon phase l i k e  kerosene.  
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H . F. SUBSTRATE PORES 

PMEMBRANE < 'FEED FEED 
AND 

P~~~~~ 

HOLLOW 
F I B E R  
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NATURE 

HYDROPHOBIC 

HY D R O P H I L I C  

FEED & 
S T R I P  
SOLUTION 

AQUEOUS 

.____ 

NONPOLAR 
ORGAN I C 

Ai]UEOUS 

NONPOLAR 
O R G X I I  C 

Fig. 2. Hollow fiber contained liquid membrane (HFCLM) structures 
for different porous substrates, feeds and membranes. 
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I f  t h e  s u p p o r t  i s  hydrophobic, i t  i s  p r e f e r e n t i a l l y  w e t  by t h e  
hydrocarbon f e e d  and s t r i p  phases ,  whereas i f  i t  i s  h y d r o p h i l i c ,  i t  
w i l l  be p r e f e r e n t i a l l y  w e t  by t h e  membrane phase. The phase i n t e r -  
f a c e  l o c a t i o n s  w i l l  be similar t o  t h o s e  shown i n  F ig .  2 ,  except  
t h a t  t h e  r o l e  of t h e  support  w i l l  be  reversed  here .  The o r g a n i c  
feed/aqueous membrane/hydrophobic suppor t  system w i l l  appear  s i m i -  
l a r  t o  t h e  aqueous f e e d l o r g a n i c  membranefhydrophilic suppor t  system, 
and v i c e  v e r s a .  For hydrophobic s u p p o r t ,  t h e  aqueous ( o r  p o l a r  
organic)  membrane w i l l  be  a t  a p r e s s u r e  h igher  t h a n  t h e  f e e d l s t r i p  
phases  ( 9 ) ,  and f o r  h y d r o p h i l i c  suppor t ,  i t  would be j u s t  t h e  
o p p o s i t e .  

The f o u r  HFCLM c o n f i g u r a t i o n s  d e s c r i b e d  above are not  exhaus- 
t i v e .  There can b e  a d d i t i o n a l  c o n f i g u r a t i o n s .  F u r t h e r ,  we have 
shown both  t h e  feed  and t h e  s t r i p  f i b e r s  t o  be of t h e  same dimen- 
s i o n s .  T h i s  is  n o t  necessary ;  w e  have a c t u a l l y  made HFCLM per-  
meators  w i t h  d i f f e r e n t  m f i b e r s .  I n  a d d i t i o n ,  d i f f e r e n t  t y p e s  
of f i b e r s  can a l s o  be used i n  t h e  same permeator .  They are s t u d i e d  
elsewhere.  

I n  rea l  s i t u a t i o n s ,  some f i b e r s  i n  a permeator may be defec-  
t i v e .  This causes  breakthrough of one phase i n t o  a n o t h e r .  When t h e  
membrane phase is a t  a h igher  p r e s s u r e  than t h e  feed  and s t r i p  
phases ,  t h e  membrane l i q u i d  may l e a k  i n t o  t h e  mobile  phases ,  How- 
e v e r ,  small l e a k s  do not  s e r i o u s l y  undermine t h e  s e p a r a t i o n  capa- 
b i l i t y  of t h e  HFCLM. When t h e  membrane phase is a t  a lower pres -  
s u r e ,  t h e  feed o r  s t r i p  may l e a k  i n t o  t h e  membrane. However, i t  i s  
always p o s s i b l e  t o  p e r i o d i c a l l y  charge f r e s h  l i q u i d  membrane from 
t h e  r e s e r v o i r ,  and/or  t o  r e c y c l e  t h e  contaminated membrane l i q u i d  
a f t e r  adequate  phase s e p a r a t i o n .  These a r e  a d d i t i o n a l  advantages 
of t h e  CLM over  t h e  convent iona l  SLM-s where f i b e r  d e f e c t  d i r e c t l y  
connec ts  t h e  f e e d  t o  t h e  s t r i p  phase. 

SOLUTE TRANSFER RATES AND COEFFICIENTS I N  HFCLM PERMEATORS 

A d e t a i l e d  mass t r a n s f e r  model i n  a HFCLM permeator should  
c o n s i d e r  d i f f e r e n t i a l  mass t r a n s p o r t  i n  a l l  t h r e e  s p a t i a l  d i r e c t i o n s ,  
t h e  curved boundary s u r f a c e s ,  and t h e  d i f f e r e n t  p r o b a b i l i t i e s  of 
l o c a t i o n  of a feed  f i b e r  v i s -a -v is  t h e  s t r i p  f i b e r s .  However, a t  
t h i s  e a r l y  s t a g e  i t  is  more a p p r o p r i a t e  t o  adopt  a f i r s t  o r d e r  
a n a l y s i s  i n  o r d e r  t o  i d e n t i f y  t h e  r o l e  of t h e  major f a c t o r s ,  and t o  
f o c u s  on t h e  advantages  and d isadvantages  of t h e  v a r i o u s  p o s s i b l e  
HFCLM c o n f i g u r a t i o n s .  
approach employing s imple mass t r a n s f e r  c o e f f i c i e n t s .  

A s  such,  w e  u s e  a r e s i s t a n c e s - i n - s e r i e s  

The s o l u t e  c o n c e n t r a t i o n  p r o f i l e  from t h e  feed t o  t h e  s t r i p  
s o l u t i o n  i s  shown f o r  each c o n f i g u r a t i o n  i n  Fig .  3 f o r  s imple 
p a r t i t i o n i n g  a t  each of t h e  two i n t e r f a c e s .  T h i s  f i g u r e  does 
not  show t h e  curved s u r f a c e s  of both k inds  of hol low f i b e r s .  
o rganic  o r  
(and t o  t h e  

The 
aqueous membrane always r e f e r  t o  t h e  s h e l l s i d e  space 

suppor t  pores  wherever i n d i c a t e d )  f o r  s imple 
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AQUEOUS 
MEMBR4NE ORGANIC 

FEED 

La-1 

1 7 4 1  

ORGAN I C 
S T R I P  

A - 

ORGANIC ' 1) 
- FEED \ AQUEOUS 

MEMBRANE \\ 

c. AQUEOUS -_f 
I N  PORES 

B - 

ORGAN I C 
S T R I P  

Fig. 3. Solute concentration profile i n  four different 
HFCLM configurations for separation from liquid 
solutions. 
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1742 SENGUPTA ET AL.  

permeation without  any r e a c t i o n .  The o v e r a l l  s o l u t e  t r a n s f e r  
r e s i s t a n c e  ( 1 / K )  i s  made up of t h e  r e s i s t a n c e s  of t h e  feed s i d e  
boundary l a y e r  ( l / k F ) ,  feed hol low f i b e r  s u b s t r a t e  ( l / k E ) ,  s h e l l -  
s i d e  l i q u i d  membrane(l/km), s t r i p  s i d e  hollow f i b e r  s u b s t r a t e  
( l / k z )  and t h e  s t r i p  s i d e  boundary l a y e r  ( l / k s ) .  The fo l lowing  
assumptions are used: (1) no two-dimensional mass t r a n s f e r  e f f e c t s  
e x i s t  between t h e  pore l i q u i d  and t h e  o u t s i d e  l i q u i d ; ( 2 )  resis- 
tances- in-ser ies  approach i s  v a l i d  w i t h  a permeator-averaged 
v a l u e  f o r  each of t h e  f i v e  r e s i s t a n c e s ;  (3) hollow f i b e r  s u b s t r a t e  
c o e f f i c i e n t  determined by t h e  model of unhindered d i f f u s i o n  through 
a t o r t u o u s  porous medium (9,10,11,12,14); ( 4 )  a n  e f f e c t i v e  t h i c k -  
n e s s  can be assumed f o r  t h e  s h e l l  s i d e  l i q u i d  membrane (7,8): 
( 5 )  feed o r  s t r i p  boundary l a y e r  c o e f f i c i e n t s  may be obta ined  
from Graetz  s o l u t i o n s  (11). 

I f  t h e  feed and t h e  s t r i p  hollow f i b e r  s u b s t r a t e s  have 

D i d e n t i c a l  dimensions,  and t h e  s o l u t e  d i s t r i b u t i o n  c o e f f i c i e n t  m 
a t  t h e  feed-membrane & n t e r f a c e  i s  equal  t o  t h a t  a t  t h e  s t r i p -  
membrane i n t e r f a c e ,  m , then  w e  may show, f o r  aqueous f e e d l s t r i p ,  
o rganic  membrane and Rydrophobic s u b s t r a t e ,  ( c o n f i g u r a t i o n  A ,  
Fig. 3) t h a t  

(1) 
1 I d i l l  1 d i l l  - =  1 (-+ - ) + - - ( - + - ) + -  - - 

Kw kW kw % kso kso do m~ kmo 
F S F S 

Here s u b s c r i p t  w i n d i c a  es aqueous phase, s u b s c r i p t  o i n d i c a t e s  
o r g a n i c  phase and r$ = m i  = mD (def ined  as t h e  e q u i l i b r i u m  organ- 
i c  phase c o n c e n t r a t i o n  d iv ided  by t h a t  i n  t h e  aqueous phase) a t  
b o t h  t h e  aqueous-organic phase i n t e r f a c e s .  The corresponding 
express ions  f o r  t h e  o t h e r  c o n f i g u r a t i o n s  i n  F ig .  3 are: 

Conf igura t ion  B (Organic f e e d / s t r i p ,  aqueous o r  p o l a r  organic  
membrane, hydrophobic s u b s t r a t e )  

_ = _  1 do (2.2) +do (-1 +-) 1 + -  mD 
F S 

KO di kr k: kso kso kmw 

Conf igura t ion  C (Aqueous f e e d / s t r i p ,  o rganic  membrane, h y d r o p h i l i c  
s u b s t r a t e )  

Conf igura t ion  D (Organic f e e d / s t r i p ,  aqueous o r  p o l a r  organic  
membrane, h y d r o p h i l i c  s u b s t r a t e )  

di "D 1 1 
- =  (,+-) + - m  (-+-) + - -  S D F  S 
KO ko ko ksw ksw do kmw 

1 di 

( 3 )  

( 4 )  
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SEPARATION OF L I Q U I D  SOLUTIONS 1743 

I f  t h e  dimensions and t h e  number of t h e  f e e d  f i b e r s  are n o t  
i d e n t i c a l  t o  t h o s e  of t h e  s t r i p  f i b e r s ,  and $ m:, then  t h e  
r e l a t i o n s  between K and t h e  i n d i v i d u a l  c o e f f i c i e n t s  are much 
more complex. We i l l u s t r a t e  such a r e l a t i o n  below f o r  Configura-  
t i o n  B: 

S n 1 ds 
S 

F dE{ dF S b 
+ - ( 1 - -  O " D , N  C S - ( l - - ) N  C 

do % 0 

1 1 m 1 1 
=-+-+- +-+- s s  

ks 
F F  F k F  F 

di ko so do krnw so  di ko 

(5) 

where % 
permeator c o n t a i n i n g  NS number of s t r i p  f i b e r s  and NF number 
of feed  f i b e r s .  The corresponding e x p r e s s i o n s  f o r  aqueous f e e d /  
s t r i p  systems are a v a i l a b l e  i n  (8) .  The d i r e c t  r e l a t i o n  between 
RT, KO, f i b e r  numbers, dimensions and bulk  c o n c e n t r a t i o n s  f o r  
c o n f i g u r a t i o n  B are 

is  t h e  t o t a l  molar ra te  of s o l u t e  t r a n s f e r  i n  t h e  

K [TI d r  NF Cf; - TI dz N S  C t ]  % =  0 
S Here CF and Cb r e p r e s e n t  t h e  bulk  s o l u t e  con e n t r a t i . o n s  i n  t h e  

feed  an$ s t r i p  s o l u t i o n s  r e s p e c t i v e l y  whereas C! i n  r e l a t i o n  ( 5 )  
i s  t h e  s o l u t e  c o n c e n t r a t i o n  i n  s t r i p  o r g a n i c  phase a t  t h e  aqueous- 
o r g a n i c  i n t e r f a c e  l o c a t e d  a t  the o u t e r  d iameter  of t h e  hydrophobic 
hol low f i b e r .  

EXPERIMENTAL 

S o l u t e s  s t u d i e d  are phenol  (Fluka Chemical, Ronkonkoma, NY) 
and acet ic  a c i d  ( g l a c i a l  r e a g e n t ,  E l e c t r o n i c  grade ,  DuPont, 
Wilmington, D E ) .  Organic l i q u i d  membrane c o n s i s t e d  of e i t h e r  MIBK 
(methyl i s o b u t y l  ketone,  c e r t i f i e d  ACS grade ,  F i s h e r  S c i e n t i f i c ,  
Fa i r lawn,  NJ)  o r  decanol  (Eastman Kodak Co., Roches te r ,  NY). 
Hydrophobic hol low f i b e r s  used were of polypropylene (PP) X-10 
t y p e  (Ques ta r ,  C h a r l o t t e ,  NC; do = 150 microns;  d .  = 100 microns;  
p o r o s i t y  0 .2 ) .  Hydrophi l ic  hollow f i b e r s  of regekera ted  c e l l u l o s e  
(RC) were obta ined  from CD Medical Inc., Miami Lakes, F1. and 
CasChem I n c . ,  Bayonne, N J  and w e r e  washed as recommended and d r i e d  
b e f o r e  usage. The RC f i b e r  dimensions from t h e  two s o u r c e s  are 
d = 200 microns ,  270 microns and di = 150 microns,  220 microns.  

HFCLM permeators  were prepared i n  a 10 cm long  1 .27  c m  I . D .  
s t a i n l e s s  steel (s.s.) n i p p l e  a c t i n g  as t h e  s h e l l .  There was a 
t e f l o n  s l e e v e  (0.61 c m  I . D . ,  103 c m  O.D.) epoxied t o  t h e  S . S .  

n i p p l e  i n s i d e  s u r f a c e .  The f i b e r s  passed through t h i s  s l e e v e  which 
provided a smooth s u r f a c e  f o r  t h e  f i b e r  bundle .  The f i b e r  bundle  
w a s  prepared by t a k i n g  two sets of f i b e r s ,  p l a c i n g  one set on 
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1744 SENGUPTA ET AL.  

a n o t h e r  and c a r e f u l l y  r o l l i n g  them t o g e t h e r  i n  t h e  midd le  w h i l e  
keep ing  t h e  ends  s e p a r a t e d  on t h e  two s i d e s .  T h i s  two-set f i b e r  
bundle  w a s  p u t  i n t o  t h e  pe rmea to r  from one s i d e  and was p u l l e d  from 
t h e  o t h e r  s i d e .  Ends of  each set of  f i b e r s  were t a k e n  o u t  a t  e a c h  
permeator  end s e p a r a t e l y  th rough  t h e  two a r m s  of  a Y - f i t t i n g  
(Fig.  1) and p o t t e d .  

The permeator  S . S .  s h e l l  had open ings  f o r  membrane l i q u i d  
i n t r o d u c t i o n  and wi thd rawa l .  
t h e  pe rmea to r  i s  l o n g e r  t h a n  10 c m ,  a n  e f f e c t i v e  pe rmea t ion  l e n g t h  
of 1 0  cm w a s  chosen s i n c e  t h e  two f i b e r  sets were e f f e c t i v e l y  
s e p a r a t e d  beyond t h a t  d i s t a n c e .  For p o t t i n g ,  t h e  Armstrong C 4 f D  epoxy 
(Beacon Chemicals ,  Mount Vernon, NY) w a s  u sed .  

Although t h e  a c t u a l  f i b e r  l e n g t h  i n  

The e x p e r i m e n t a l  s e t u p  schemat i c  i s  b a s i c a l l y  t h a t  i n d i c a t e d  
i n  t h e  bot tom of F i g .  1. The membrane phase p r e s s u r e  w a s  con- 
t r o l l e d  by t h e  gas c y l i n d e r  p r e s s u r e  imposed on  t h e  membrane l i q u i d  
r e s e r v o i r .  I n l e t  and e x i t  p r e s s u r e s  of  t h e  f e e d  and t h e  s t r i p  
streams were no ted .  T i m e  v a r y i n g  c o n c e n t r a t i o n  measurements were 
made i n i t i a l l y  t o  d e t e r m i n e  when s t e a d y  s t a t e  was ach ieved .  The 
f l o w  rates  were measured u s i n g m e a s u r i n g c y l i n d e r s  and timers s i n c e  
t h e i r  v a l u e s  were low. Experiments  were conducted i n  t h e  tempera- 
t u r e  r ange  of 2 2 - 2 4 O C .  

Acetic a c i d  c o n c e n t r a t i o n s  i n  d i f f e r e n t  streams were d e t e r -  
mined by NaOH- t i t r a t ions  ( 1 2 , 1 4 ) .  A Hewlett-Packard HPLC w a s  used 
t o  d e t e r m i n e  phenol  c o n c e n t r a t i o n s ,  u s i n g  a r e v e r s e  phase C-18 
column w i t h  35% a c e t o n i t r i l e - 6 5 %  wa te r  c a r r i e r ,  and a UV d e t e c t o r  
a t  280 nm. 

RESULTS AND DISCUSSION 

Hydrophobic HFCLM Permeator  

We f i r s t  p r e s e n t  t h e  i n i t i a l  t ime-dependent s o l u t e  pe rmea t ion  
behav io r  i n  a hydrophobic  HFCLM permeator  f o r  two d i f f e r e n t  sys t ems ;  
(1) t r a n s f e r  of a c e t i c  a c i d  from a 2 9 . 7  mg/mL aqueous f e e d  s o l u t i o n  
th rough  a CLM of MIBK i n t o  water used as  s t r i p  s o l u t i o n  and (2 )  
t r a n s f e r  of phenol  from a 9 .0  mg/mL aqueous f e e d  s o l u t i o n  th rough  a 
CLM of  M I B K  i n t o  wa te r  u sed  as s t r i p  s o l u t i o n .  The hydrophobic  PP 
hol low f i b e r  pe rmea to r  had 300 f e e d  and 300 s t r i p  f i b e r s  (X-10) w i t h  
a mass t r a n s f e r  a r e a  p e r  u n i t  volume of 3 2 . 2  cm-l. 
p a t t e r n  w a s  c o c u r r e n t .  

The f l o w  

F i g u r e  4 shows t h a t  a c e t i c  a c i d  c o n c e n t r a t i o n s  a t  t h e  
hydrophobic  permeator  o u t l e t s  on t h e  f e e d  s i d e  and t h e  s t r i p  s i d e  
have r eached  s t e a d y  v a l u e s  w i t h i n  2-4 hours .  The s t r i p  s i d e  o u t l e t  
c o n c e n t r a t i o n s  of phenol  are show as a f u n c t i o n  of  t i m e  i n  F i g .  5 .  
A s t e a d y  s t a t e  c o n c e n t r a t i o n  is reached  around 11-12  hour s .  The 
d i f f e r e n c e  i n  t i m e  t o  r e a c h  s t e a d y  state i n  t h e  two c a s e s  i s  p r i -  
m a r i l y  due t o  t h e  d i f f e r e n c e  i n  t h e  v a l u e s  of the d i s t r i b u t i o n  CO- 

e f f i c i e n t  of t h e  two s o l u t e s ,  a c e t i c  a c i d  and pheno l ,  between wa te r  
and M I B K .  
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AcOH - MIBK - H20 
26 

n 

IFEED INLET CONCENTRATION: 29.7 rng/rnl 

TINE (HR) 

Fig. 4 .  Time dependent acetic acid concentrations in 
feed and strip outlet streams from hydrophobic 
HFCLM permeator with MIBK as CLM. 

4 b  PHENOL-MIBK-H20 

FEED INLET CONCENTRATION: 9 mg/ml 

31 

2 4 6 8 10 12 14 16 

TIME (HR) 

Fig. 5. Time dependent phenol concentration in strip 
outlet stream from hydrophobic HFCLM permeator 
with MIBK as CLM. 
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f o r  a c e t i c  a c i d  between water and MIBK i s  9 The v a l u e  of 
around 0.52 (14) whi e t h a t  f o r  phenol v a r i e s  s t r o n g l y  wi th  phenol 
c o n c e n t r a t i o n  i n  MIBK-water  system (16). A v a l u e  of 25-35 f o r  t h e  
l a t t e r  would be reasonable  (8) .  Obviously, t h e  t i m e  needed t o  
raise t h e  phenol c o n c e n t r a t i o n  i n  CLM t o  t h i s  l e v e l  would b e  con- 
s i d e r a b l y  h igher  than  t h a t  f o r  acet ic  a c i d .  The MIBK volume i n  t h e  
e x t e r n a l  membrane l i q u i d  r e s e r v o i r  would a l s o  i n f l u e n c e  t h e  t i m e  
needed t o  reach  s t e a d y  state.  

S ince  t h e  organic  membrane l i q u i d  M I B K  wetted t h e  hydrophobic 
f i b e r s  i n  both t h e  systems,  t h e  membrane p r e s s u r e  (between 6.9-10.2 
kPa) w a s  always kept  lower than  t h e  p r e s s u r e  of t h e  aqueous feed  ( in-  
l e t  34.5 kPa, o u t l e t  13.8 kPa) and t h e  aqueous s t r i p  ( i n l e t  % 48.3  
k P a , o u t l e t  % 13.8 kPa) .  
l e v e l s  ( feed  % 0.5 mL/min, sweep 0.79-0.9 mL/min) t o  a r t i f i c i a l l y  
i n c r e a s e  t h e  t i m e  t o  r e a c h  s teady  s ta te .  We have a l s o  run t h i s  
HFCLM permeator s u c c e s s f u l l y  a t  f low rates t h a t  are a t  l e a s t  an 
order  of magnitude l a r g e r .  

Feed and sweep f low rates were kept  a t  low 

Hydrophi l ic  HFCLM Permeator 

Some r e s u l t s  of HFCLM permeation are presented  next  f o r  two 
h y d r o p h i l i c  hol low f i b e r  (RC) permeators  (modules A and B). The 
s o l u t e  i s  phenol i n  aqueous f e e d l s t r i p  system and t h e  organic  l i q u i d  
membrane i s  e i t h e r  decanol  o r  MIBK. Table 1 shows t h e  time-depen- 
d e n t  experimental  m a s s  t r a n s f e r  rates of phenol i n  both modules. 
These ra tes  have been c a l c u l a t e d  w i t h  r e s p e c t  t o  both  t h e  feed  
stream and t h e  s t r i p  stream. 

Data groups 1 and 2 show t h a t  t h e  m a s s  t r a n s f e r  r a t e  based on 
feed i s  cons iderably  l a r g e r  than  t h a t  based on t h e  s t r i p ,  i n d i c a t -  
i n g  phenol accumulation i n  t h e  membrane l i q u i d .  Data groups 3 and 
4 taken  f o r  longer  t i m e  p e r i o d s  i n d i c a t e  t h a t  b o t h  m a s s  t r a n s f e r  
rates become e s s e n t i a l l y  same; f u r t h e r ,  they  do n o t  change wi th  
t i m e ,  i n d i c a t i n g  s t e a d y  s ta te .  I n  f a c t ,  t h e  o v e r a l l  mass t r a n s f e r  
c o e f f i c i e n t  shown i n  t h e  las t  column h a s  n o t  o n l y  become c o n s t a n t  
bu t  is e s s e n t i a l l y  independent of t h e  two modules even though t h e  
f i b e r  dimensions and e f f e c t i v e  areas are d i f f e r e n t  i n  t h e  two 
modules. 

This  l a s t  r e s u l t  fo l lows  d i r e c t l y  from equat ion  (3) f o r  con- 
f i g u r a t i o n  C .  S ince  phenol-water-decanol is  a h igh  mD (% 25) 
system ( 8 ) ,  t h e  membrane r e s i s t a n c e  term i g  n e g l i g ’ b l e .  
q u a n t i t y  Kw i s  c o n t r o l l e d  by @ , q, ksw and ksw. A s  t h e  two f low 
rates are v e r y  s i m i l a r ,  
t h e  s u b s t r a t e  c o e f f i c i e n t s  (8,ll). 

The E 
and k t  are q u i t e  close; so are 

Equat ion ( 3 )  i n d i c a t e s  t h a t  f o r  two d i f f e r e n t  l i q u i d  membranes 
with h i g h  v a l u e s  should b e  i d e n t i c a l  f o r  t h e  same 
aqueous f low rates i n  a g iven  permeator. Table 2 provides  a 

%-S, Kw 
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Table 1. Experimental  mass t r a n s f e r  r a t e s  w i t h  t i m e  

S u b s t r a t e  : Hydrophi l ic  (Regenerated C e l l u l o s e )  
Feed : Phenol-water; S t r i p  : Water; Membrane : Decanol 
Temperature : 22-24OC; Flow P a t t e r n  : Cocurrent  
Module A : E f f e c t i v e  area 1 2 6  s q  cm; F i b e r  id/od = 1 5 0 / 2 0 0  microns 
Module B : E f f e c t i v e  a r e a  170 s q  cm; F i b e r  i d / o d  = 2201270 microns 

Kw 5 
Data Module Feed Avg. Avg. Expt. Mass T r a n s f e r  
Group N o .  i n l e t  f e e d  s t r i p  t i m e  r a t e  (mg/hr) 

No. conc. f low f low based based x 10 
hours  JiCA on on ~ cm 

mL min rnin feed s t r i p  see 

1 A 9 . 0  1 .73  2 . 8 8  1.5 
3 . 0  

4.5 

6 . 0  

B 9 . 3  1.15 1 . 5 5  5 . 0  

7 . 0  

A 9 . 0  0 .59  1 . 9 3  1 5 . 0  

1 9 . 0  

23 .0  

39 .0  

4 ( * )  B 9.3 0 . 6 6  1 . 4 8  2.0 

5 .0  

6 . 5  

9 . 0  

3 . 5 0  1 . 4 7  

3 . 5 5  1 . 5 1  

4 . 0 0  1 . 6 8  

4 .37  1 . 7 4  

4 .56  2.16 

4 . 2 9  2.48 

1 .77  - 
1 . 3 2  1 . 3 9  

1 . 5 3  1 . 2 9  

0 . 9 4  1 . 4 6  

2 .53  2 .24  

2 . 5 2  2 .32  

2 . 3 1  2.34 

1 . 8 9  2 .93  

6 . 0 2  

6 . 1 9  

7 . 2 0  

7 . 7 6  

6 . 9 1  

7 . 0 5  
- 

2.34  

2 . 8 2  

2 . 5 2  

3 .86  

3 .86  

3 . 5 6  

2.82 

29 .0  1 . 7 3  2 .04  2 . 5 2  

3 2 . 0  1 . 5 2  1.38  2.23 

*Between d a t a  groups 2 and 4 ,  t h e  membrane l i q u i d  w a s  e q u i l i b r a t e d ,  
g i v i n g  rise t o  f a s t e r  response  t i m e  f o r  d a t a  group 4 .  
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1749 SENGUPTA ET A L .  

Table 2 .  Mass t r a n s f e r  c h a r a c t e r i s t i c s  and p r e s s u r e  c o n d i t i o n s  

S u b s t r a t e :  Hydrophi l ic  (Regenerated C e l l u l o s e )  
Feed : Phenol-waterh S t r i p  : Water 
Temperature : 22-24 C 
Module : A; Flow p a t t e r n  : Cocurrent  
Feed I n l e t  Conc. : 5 .4  mg/mL (5400 ppm) 

Membrane Average Feed f low Phenol removal Percent  
s t r i p  ra te ,  ra te  from feed phenol 

d, /min feed  (1) 
flow ra te  mI,/min mg/hr removed from 

Decanol 6.5 0.7 101 

3 .0  180 

9.4 338 

M I B K  7.7 0.7 84 

1 .4  101 

8 . 0  288 

44% 

19% 

11% 

37% 

23% 

11% 

(1) 100 * (Feed i n l e t  conc. - Feed o u t l e t  conc.) / (Feed i n l e t  Conc.) 

Membrane Feed Feed S t r i p  S t r i p  
phase i n l e t  o u t l e t  i n l e t  o u t l e t  

p r e s s u r e  p r e s s u r e  p r e s s u r e  p r e s s u r e  p r e s s u r e  
kPa kP a kPa kP a kPa 

48-65 28-48 14-48 28-41 17-24 

v e r i f i c a t i o n  f o r  t h i s .  We observe ,  t h a t ,  f o r  two d i f f e r e n t  organic  
membrane l i q u i d s  (decanol ,  % 2 5 ;  MIBK,  25-35) ,  a t  s imi l a r  feed 
and sweep f low rates, t h e  phenol removal rates are q u i t e  similar. 
This  t a b l e  a l s o  g i v e s  t h e  p r e s s u r e  c o n d i t i o n s  used w i t h  h y d r o p h i l i c  
f i b e r s ;  t h e  o r g a n i c  membrane p r e s s u r e  i s  h igher  t h a n  t h o s e  of t h e  
feed as  w e l l  as che s t r i p .  The i n t e r f a c i a l  areas per  u n i t  volume 
i n  t h e s e  h y d r o p h i l i c  permeators  are 43-58 c m - l .  

We provide now a gl impse i n t o  t h e  u s e f u l n e s s  of equat ions  1-4 
f o r  p r e d i c t i n g  K i n  a HFCLM permeator. We select equat ion  1 f o r  
hydrophobic s u b s t r a t e  and aqueous f e e d / s t r i p  i n  t h e  phenol-MIBK 
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water system. Consider t h e  behavior  p a r t i a l l y  shown i n  F ig .  5. 
The exper imenta l ly  obta ined  v a l u e  of 
Using Grae tz  s o l u t i o n  and s u b s t r a t e  in format ion  about  t h e s e  f i b e r s  
from r e f e r e n c e  (ll), we f i n d  t h a t  t h e  p r e d i c t e d  
cm/sec, i n d i c a t i n g  how t h i s  a n a l y s i s  can be employed f o r  a u s e f u l  
order-o f -magni t u d e  p r e d i c t  ion .  

Kw is  9 . 3 2  x lod5 cm/sec. 

Kw i s  10.3 x 

Membrane S t a b i l i t y  

Unless  t h e  f i b e r s  are d e f e c t i v e ,  we  have found t h a t  t h e  HFCLM 
i s  q u i t e  s t a b l e .  We have run systems where MIBK w a s  t h e  membrane 
wi th  aqueous f e e d l s t r i p  f o r  as long as 60 hours  without  observ ing  
any membrane i n s t a b i l i t y .  We have a l s o  run t h e  hydrophi l ic  f i b e r  
permeator wi th  small d e f e c t s  f o r  long p e r i o d s  of t i m e ,  wi thout  
a f f e c t i n g  s t e a d y  s ta te .  

Role of t h e  D i s t r i b u t i o n  C o e f f i c i e n t s  i n  Overa l l  Mass T r a n s f e r  

For systems having s imple permeation and no complexi t ies  due 
t o  i n t e r f a c i a l  r e a c t i o n s ,  f a c i l i t a t e d  o r  coupled t r a n s p o r t ,  we  can 
sugges t  c o n d i t i o n s  t h a t  l e a d  t o  increased  K i n  HFCLM permeator. 

. In  t h e  c a s e  of hydro- We cons ider  s p e c i f i c a l l y  t h e  r o l e  of 
phobic f i b e r s  i n  aqueous f e e d l s t r i p  sys e m s ,  w i t h  % >> 1, e q u a t i  n 
(1) s u g g e s t s  t h a t  on ly  t h e  aqueous boundary l a y e r  c o e f f i c i e n t s  
and ks c o n t r o l  t r a n s p o r t .  I f  t h e  system has mD << 1, t h e  
s u b s t r a t e  and t h e  membrane r e s i s t a n c e s  become very  l a r g e .  For t h e  
s a m e  f i b e r s  i n  organic  f e e d l s t r i p  systems,  m <<  1 w i l l  e l i m i n a t e  
t h e  CLM r e s i s t a n c e  al lowing t h e  s u b s t r a t e  and boundary l a y e r  
r e s i s t a n c e s  t o  c o n t r o l  t r a n s p o r t .  
hand, w i l l  mean t h a t  CLM r e s i s t a n c e  may become c o n t r o l l i n g .  

Ip B 
kW 

W 

D 

A mD >> 1 system on t h e  o t h e r  

For h y d r o p h i l i c  f i b e r s  and aqueous f e e d l s t r i p  systems having 

mD >> 1 system, boundary l a y e r  and s u b s t r a t e  r e s i s t a n c e s  
% << 1, equat ion  ( 3 )  sugges ts  t h a t  t h e  CLM r e s i s t a n c e  may c o n t r o l .  
For a 
( r a t h e r  than  t h e  CLM r e s i s t a n c e )  w i l l  c o n t r o l .  For t h e  same f i b e r s  
and organic  f e e d l s t r i p  systems,  w i t h  
g e s t s  t h a t  on ly  t h e  boundary l a y e r  r e s i s t a n c e s  c o n t r o l .  For 
% >> 1 systems,  however, t h e  CLM and t h e  s u b s t r a t e  r e s i s t a n c e s  
determine t h e  t r a n s p o r t  rate. 

% << 1, equat ion  ( 4 )  sug- 

CONCLUSIONS 

The hol low f i b e r  conta ined  l i q u i d  membrane (HFCLM) can be 
used e f f e c t i v e l y  f o r  s e p a r a t i o n  o r  p u r i f i c a t i o n  of l i q u i d  s o l u t i o n s .  
The CLM s t r u c t u r e  i s  p h y s i c a l l y  v e r y  s t a b l e  and can be opera ted  f o r  
long t i m e s  wi thout  any o p e r a t i o n a l  problem. CLM-s can be used f o r  
a v a r i e t y  of systems. 
membrane, and 0rgani.c feedlaqueous membrane are p o s s i b l e ,  by main- 
t a i n i n g  t h e  c o r r e c t  phase p r e s s u r e  c o n d i t i o n s ,  and us ing  t h e  r i g h t  
s u b s t r a t e s .  Based on a f i r s t  o rder  t h e o r e t i c a l  model presented  
h e r e ,  it i s  p o s s i b l e  t o  i d e n t i f y  t h e  v a r i o u s  m a s s  t r a n s f e r  

Opera t ions  w i t h  both  aqueous f e e d l o r g a n i c  
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1750 SENGUPTA ET AL. 

r e s i s t a n c e s  t o  s o l u t e  t r a n s p o r t ,  and p r e d i c t  t h e  optimum con- 
f i g u r a t i o n  f o r  systems without  chemical r e a c t i o n s .  

NOTATION 

c:, Cb 
s o l u t e  c o n c e n t r a t i o n  i n  t h e  bulk  phase f o r  feed  and 
s t r i p ,  r e s p e c t i v e l y ,  mgImL 

s o l u t e  c o n c e n t r a t i o n  a t  t h e  f i b e r  o u t s i d e  w a l l  s u r f a c e  
i n  t h e  feed and t h e  s t r i p  phases ,  mg/mL co 

d i ,  do ,  dlm hol low f i b e r  i n s i d e  d iameter ,  o u t s i d e  d iameter ,  and 
t h e  log-mean d iameter ,  r e s p e c t i v e l y ,  cm 

F S  
kw* kw 

ko’ ko 

k s w ,  k s w  

kso’ kso 

kmo’ kmw 

KW 

KO 

F S  

F S  

F S  

D m 

NF’ NS 

”r 

boundary l a y e r  c o e f f i c i e n t s  i n  t h e  feed and t h e  s t r i p  
phase,  r e s p e c t i v e l y ,  f o r  aqueous f e e d ,  cmlsec 

boundary l a y e r  c o e f f i c i e n t s  i n  t h e  feed and t h e  s t r i p  
phase,  r e s p e c t i v e l y ,  f o r  organic  f e e d ,  cmlsec 

s u b s t r a t e  c o e f f i c i e n t s  f o r  w a t e r - f i l l e d  s u b s t r a t e  on 
t h e  feed and t h e  s t r i p  s i d e ,  r e s p e c t i v e l y ,  cm/sec 

s u b s t r a t e  c o e f f i c i e n t s  f o r  o r g a n i c - f i l l e d  s u b s t r a t e ,  
on t h e  feed  and t h e  s t r i p  s i d e ,  r e s p e c t i v e l y ,  cmlsec 

l i q u i d  membrane t r a n s f e r  c o e f f i c i e n t ,  f o r  organic  and 
aqueous membranes, r e s p e c t i v e l y ,  cmf s e c  

o v e r a l l  mass t r a n s f e r  c o e f f i c i e n t  based on water phase,  
cmlsec 

o v e r a l l  m a s s  t r a n s f e r  c o e f f i c i e n t  based on organic  
phase,  cmrsec 

s o l u t e  d i s t r i b u t i o n  c o e f f i c i e n t ,  o r g a n i c  phase con- 
c e n t r a t i o n  t o  aqueous phase c o n c e n t r a t i o n ,  (mg/L)/ 
(mg1L) 

t o t a l  number of feed  and s t r i p  f i b e r s ,  r e s p e c t i v e l y ,  
i n  t h e  module 

s o l u t e  t r a n s f e r  ra te  per  u n i t  permeator l e n g t h ,  
r e l a t i o n  6 ,  mglcm-sec 

s u b s c r i p t s  and s u p e r s c r i p t s  

F,S feed o r  s t r i p  
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